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ABSTRACT

We study a family 2of steady flows of an ideal fluid in a
bounded domain D C R using a variational method. Adapting an
approach due to Arnold, we characterize dynamically possible
flows as constrained extremals of the kinetic energy considered
as a functional of the vorticity w(x), x e D. We restrict our
attention to solutions having the special form: -*

w = I{>O} ,f 4Wdx = 1
D

where I is a free parameter and * (the streamfunction) is
defined by -A* = w in D, # = -j on 8D (u is an undetermined
positive constant). A simple proof of existence of solutions is
provided by a direct variational method. The main results
concern the singular limit X + (which implies u ). We
prove that w + ,,the Dirac delta measure at x* e D, in
the distributional sense, and we characterize the point x* in
terms of the geometry of D. Further, we show that supp w.
tends asymptotically (in a Ltrong sense) to an infinitesimal disc
about x*. This follows since appropriately scaled version of
the solutions w tend to the unique radial solution of a
corresponding limit problem. In fluid dynamical terms, the
classical point vortex is obtained as the limit of vortices of
finite cross-section (of the Rankine type).
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" SIGNIFICANCE AND EXPLANATION

The purpose of this paper (and its sequel) is to give a
mathematically rigorous - as well as physically natural -
discussion of certain steady solutions of the Euler dynamical
equations for an ideal, two-dimensional fluid. The flows
considered have a prescribed distribution of vorticity

W= curl u (u devotes th4 velocity field), and are separated
into regions where = 0 and -- P 0. The shape and position
of the vortex coreS (region where /_ > 0) for a flow satisfyingthe dynamical requirements is then'etermined by the geometry of

the fluid domain (assumed bounded here). Solutions of the fluid
dynamical equations are most conveniently characterized by a
variational principle which involves finding an extreme value for
the kinetic energy of the flow subject to certain natural
constraints. This approach permits a precise analysis of the
properties of solutions to be carried out in a unified manner.
In this respectspecial emphasis is placed upon deriving the
(classical) point vortex as the limit of solutions with
concentrated vorticity .-:-

The occurence of vortices (or "eddies") in real fluid flows
is, of course, well known. The traditional literature is most
often restricted to idealizations in which (for two dimensions)
the vorticity is concentrated (as Dirac deltas) at a finite
number of points. Also, numerical simulations of vortex flows
are frequently based upon this discrete vortex approximation.
The present work, however, is devoted to a simple model problem
for which, first, the appropriate mathematical theory is
developed without the above mentioned restriction, and second,
the (asymptotic) nature of the traditional idealization is
analysed qualitatively. It should also be remarked that some of
the methods developed here for steady flows can be adapted to the
corresponding time-dependent flows.

9i
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The responsibility for the wording and views expressed nthis iptiv
summry lies with MRC, and not with the author of this report.



ON STEADY VORTEX FLOW IN TWO DIMENSIONS, I

Bruce Turkington*

In this paper we study a certain variational

problem whose extremals represent steady solutions of

the Euler dynamical equations for an ideal fluid in two

dimensions. We focus our attention on a special family

of such flows, each of which has a prescribed

distribution of vorticity and is separated into regions

of zero and of positive vorticity; we refer to flows of

this type as steady vortex flows. Using an

adaptation of the variational approach of Arnold, we

obtain dynamically possible steady vortex flows by

extremizing the kinetic energy functional subject to

some appropriate constraints. This particular

variational method is well suited both to prove the

*Departinent of Mathanatics, Nortlwestern University, Evanstcrn, IL 602C!
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existence of solutions and to determine the qualitative

properties of these solutions. We first give a simple

proof of existence using a direct (variational) method,

and compute the somewhat novel variational conditions

satisfied by extremals. We then turn to our principal

results which concern the asymptotic analysis of

solutions (each representing a vortex of finite cross-

section) in a certain singular limit (the limit being a

classical point vortex). In the latter analysis we

feel that an advantage is achieved here over other

approaches to this and related problems since sharp

results on the asymptotic nature of solutions are

obtained by relatively elementary means.

We confine ourselves in the present paper (Part I)

to a very simple flow geometry : the fluid domain is

bounded and the flow is everywhere tangential on the

boundary. In a subsequent paper (Part II) we shall

apply the results developed here in the simple case to

other more complicated situations. In particular, we

shall consider steady vortex pairs and, especially,

steady vortical wakes behind a symmetric obstacle in a

uniform stream. Axisymmetric analogues (such a vortex

rings) can also be studied using similar methods.

I. VARIATIONAL PROBLEM

Let D C R2 be a bounded and simply-connected
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domain with a smooth boundary, 8D. Throughout the

sequel we shall assume for convenience that diam D - 1;

this is achieved after appropriately scaling the

spatial variables, which we shall write as

x = (xlx 2 ) e R

We consider a steady flow of an ideal fluid of

unit density in the (fluid) domain D. The velocity

field u(x) = (ul(X), u2 (x)) and the pressure p(x)

are required to satisfy the Euler equations:

(1.1) V-u = 0 in D and vu =0 on 3D

(1.2) u°Vu= -Vp in D

where v is the exterior unit normal on 3D. The

kinematical conditions (1.1) are satisfied whenever

there exists a stream function * = *(x), x e D, in

terms of which the velocity field can be represented as

(1.3) u = JV* = (X ,-*X) in D and

* const. on aD;

here and in the sequel, J(alfa 2) = (-a2,aI) denotes

clockwise rotation through w/2. We now express the

dynamical condition (1.2) in a weak form, which will,

in turn, lead to its variational characterization. The

vorticity w =(x), x e D, is defined to be

(1.4) W = U2,x1 - ul,x2 = -A* in D

It follows by a well-known calculation that then (1.2)

becomes

(1.5) WV* = -V(p+ I/2 2) in D

-3-



We recall that a vector field a = a(x) can be

expressed as a gradient a - Vb for some function

b = b(x) if and only if

f a°JV~dx = 0 for all * e C0(D)
D

Applying this to (1.5) we have that a pressure p

exists if and only if

(1.6) f w3(#,#)dx = 0 for all * e C;(D)
D

here we use the shorthand notation

( VX.JV* = 4 x X2 - x2 x .

We let the Green function for -A in D with

homogeneous Dirichlet data on 3D be written

(1.7)g(xx') logx-x' - h(xx') x,x e D

The corresponding Green operator we denote by

(1.8) Gw(x) - f g(x,x')w(x')dx'
D

We also define (for later use) the Kirchhoff-Routh

function to be

(1.9) H(x) -1h(x,x) x e D

In terms of these, equation (1.4) inverts to become

(1.10) ' - Gw - * , a = - *IaD

Returning to (1.6) the dynamical requirement is now

expressed as a condition on w alone:

(1.11) w3 (Gw,*) dx = 0 for all * e C; (D)
D

Thus, the fluid dynamical problem (1.1,1.2) is reduced

to the problem: find w such that (1.11) holds. We

proceed by characterizing such w as the constrained

-4-



extremals of a certain energy functional.

The kinetic energy of the flow is

E =/2f lul2dx = 2f IvG 2dx
D D

so E defines a functional of w, which upon

integration by parts becomes

E(w) = 12f w(x)Gw(x)dx
D

(1.12)
= 1/2 f f g(xx')w(x)w(x')dxdx'

DD

We now construct a family of variations, w(t ), of W

for any given * as in (1.11). Let x = (y) denote

the solution of the initial value problem
d x . JV#(x) x(O) = y e Ddt

in a small interval t e (-T,T), say. The

transformations y + t(y) then form a (smooth) one-

parameter family of area-preserving diffeomorphisms

of D. The variations are defined by

w(t) (x) = W(lW(x)) x e D
t

A calculation employing the symmetry property

g(x,x') = g(x',x) then yields the first variation:

E(W(t ) =1/2f f g(xx°)w( 1t(x))w(t 1 (x'))dxdx'

DD

=i/2 f f g(Et (Y),9t(Y'))w(Y)w(Y')dydy'

DD

= E(w) + t f wA(Gw,*)dx + O(t)
D
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as t + 0. Consequently, (1.11) is equivalent to

(1.13) 0 = d E(w (t)
dt t= o

Therefore, we have shown that (local) extremals of

E(w) over any class of admissible functions w

chosen wide enough to contain all variations of the

form w(t) will yield solutions of the original

problem (1.1, 1.2) - that is, dynamically possible

steady vortex flows in D.

A natural choice for the class of admissible

functions for E(W) is the class of (measure-

theoretic) rearrangements of a given function wo;

that is, all those w satisfying

meas {x e D : w(x) > X)

f meas {x e D : w0 x) > A) for all A e R

At least formally, any (local) extremal for E(w) over

this class of rearrangements yields a solution w of

(1.11) having the prescribed measure distribution

belonging to w0' A variational principle of this form

has been proposed by Arnold [] (Appendix 2) and

certain criteria for the stability of steady flows have

been derived. Also Benjamin [2] has discussed an

existence and stability theory for steady vortex rings

in this context. In the present work we choose to

consider instead a wider class of admissible functions

in order to both facilitate the (rigorous) analysis and

-6-



obtain solutions having an especially simple form. We

wish to model a steady flow in D which is separated

into an irrotational region and a region of constant

(positive) vorticity; we do not permit vortex sheets

interior to D. To this end we let KA(D), the class

of admissible functions, consist of all those

0 w e L (D) satisfying the constraints

(1.14) f w(x)dx = 1

D

(1.15) ess sup w(x) C X
x e D

for a parameter A > (meas D) - . The circulation in

(1.14) is normalized to be 1 after scaling the

dependent variable w; A plays the role of a (vortex)

strength parameter.

The existence result proved in §2 is the

following: there exists an absolute maximizer,

W = W e KA(D), for E over KA(D) and it has the

special form

(1.16) w = AIa, 0 = {x e D : C(x) > 01

where is defined by (1.10) and the constant j > 0

is uniquely determined by w; IA  denotes the

characteristic function of the set A. The statement

(1.16) represents the strong form of the variational

conditions for the extremal w (it implies the weak

form (1.6)), and P arises as a Lagrange multiplier



S

for the constraint (1.14). The streamfunction I then

solves a nonlinear free boundary problem which can be

expressed compactly as an elliptic equation with

discontinuous nonlinearity:

(1.17) -A = XI{P>O} in D;

we note that the velocity field u = JV* is continuous

across the free boundary, 30. In other words, when

W takes the special form (1.16) the general condition

(1.6) reduces simply to the requirement that 30 be a

streamline (for I).

There is no corresponding uniqueness result for

solutions, or even for absolute maximizers of the form

(1.16). Indeed, for certain geometrics nonuniqueness

can be proved using the asymptotic results in §3-4.

The main body of analysis occurs in 13-4 where

the asymptotic nature of maximizers w as A - is

determined. We expect to obtain in the limit a steady

point vortex; indeed we show that

(1.18) W(x) + 6(x-X*) as X + -

where the convergence is in the sense of distributions

and 6(z) denotes the unit (Dirac) delta measure

concentrated at z = 0. Furthermore, the location

x* e D is determined (by the geometry of D) according

to

(1.19) H(X*) = min H(x) (recall (1.9))
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II

Strictly speaking, as X* is not necessarily uniquely

determined the statement (1.18) may hold only for a

sequence A = A. + m. In §3 the basic asymptotic
j

estimate for large A -from which all else follows -

is proved; it states that

(1.20) diam (supp w.) Re (wic 2=1)

for a positive constant R > 1 (independent of A).

In §4 we establish the sharp limiting forms of

" A and a" To do so we introduce the center of

vorticity
x = f x w,(x)dx

D

and the scaled version or ("blow-up") of wA:

-12.
C (y) = - XX + cy) (AWE =1)

I =A )(Y) y e BR(O) ,

where AA S BR(0) is the scaled version of a., We

prove that a unique radial limit is approached as

CA + I B(0) weakly star in L (D)

11

aAA+ aB(0) C1 sense as curves .

These results depend upon some symmetry lemmas in

potential theory given at the beginning of §4.

We remark that the condition (1.19) determining

X* is anticipated by the classical theory of a point

vortex moving through an ideal fluid (otherwise

irrotational) within a bounded domain. According to

the theory developed by Kirchhoff and Routh, a point
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vortex of unit circulation concentrated at X(t) e D

(t is time) moves along a trajectory determined by the

system

(1.21) = -JVH(X)

evidently a Hamiltonian system with one degree of

freedom. Now we see why the limit as A + - of steady

flows induced by wA should tend to a steady point

vortex at X* satisfying (1.19); indeed, X* is an

equilibrium point of the Hamiltonian system (1.21)

since VH(X*) = 0. For a full discussion of the

classical theory we refer the reader to Lin [12); see

also the recent work of Richardson [15).

It is possible to study a closely related class of

variational problems in which solutions of the form

(1.16) are replaced by solutions of the following form:

= A(*+) 8  0 < (I' as above)

The appropriate class of admissible functions is

K (D) C LP(D) which is obtained by removing the

constraint (1.15), and the appropriate functional is

E(w)= E(w) - [ -]Pdx

D

for p = 1 + 1/0; A > 0 is prescribed. The existence

of an absolute maximizer w = w,,8 for E over

K,(D) can be proved using a direct method similar to

that given in §2; general existence theorems of this

type appear in Berestycki and Brezis [3]. Asymptotic

-10-



results for w as A * can also be shown by

natural (though not entirely obvious) extensions of the

techniques developed in 13-4. In particular, the

estimate (1.20) for large A holds for arbitrary

0 < 8 < - (fixed); we will not present the proof

here. This asymptotic estimate has been proved already

for 8 - 1 by Caffarelli and Friedman [6), and for

8 > 1 by Berger and Fraenkel [5s however these

authors begin with a different variational

characterization of solutions from the above. Their

proofs (fundamentally the same in both) are entirely

different from our proof (§3). First the

connectedness of 0 .,8 " > 0) must be established

(this seems to require 8 ) 1 unless special symmetry

of the domain D is assumed), and then the (potential-

theoretic) capacity of 0 in D is estimated; this

yields (1.20) since the capacity can be related to the

diameter of QxX The techniques given in §3 seem

preferable, however, because (i) they are simpler and

(ii) they are more closely allied with the techiques

needed to study analogous time-dependent flows with

concentrated vorticity; we intend to pursue this latter

topic elsewhere. Finally, we remark that the

functional E8  represents a penalization of the energy

functional E for small 8, and in fact the

solutions w (as in (1.16)) can be obtained as the

• -11-
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limits of the (penalized) solutions wA, as

8 + 0+ . Accordingly, alternate proofs of all the

theorems of §2 can be based on this procedure.

Related papers not already cited include -

Goldstik [9], Keady and Norbury [11), Keady [10],

Gallouat [8]; in the context of vortex pairs and/or

rings - Berger and Fraenkel [4], Norbury [14), Friedman

and Turkington [7]. The applied literature is

referenced in Saffman and Baker [16].

§2.EXISTENCE

We recall from §1 the definitions:

KA(D) = { e L (D) f I w(x)dx = 1

(2.1) D

0 ( w(x) A A a.e. x e D)

(2.2) E(w) =1/2f f g(x,x')w(x)w(x')dxdx'

DD

We assume throughout the sequel that

(2.3) A > (meas D)-1

4 An absolute maximum for E over KA(D) is now

found by a simple direct method.

Theorem 2.1. There exists w = wX e KA(D) such that

(2.4) E(w) = max E(w)w e K KX (D)

Proof. We shall often use the obvious estimate (recall

-12-
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diam D 1)

(2.5) g(x,x °) 4 log Ix -x'l x,x' e D

That E is bounded above on KA(D) is evident from:

2E(w) 4 sup Gw(x)

( sup f log Ix - x'I w(x')dx'
xeD D

-1 2
'~ f log lyl- dy (Xwe =1)

11
Tit (log +- /2 CM=

Thus there is a sequence w. e KX(D) such that

lim E(w.) ~ sup E(W) <r•
j - e Kx(D)

As KA(D) is clearly a compact subset of LM(D) in

the weak star topology we can extract a subsequence of

(a (call it again w.) such that

+D) w e KX(D) weakly star in L (D)

Now it remains to prove E(w) + E(M); but this

1
follows easily since g(xx') e L (DXD) and

i (X)W (x') + w(x)w(x') weakly star in L"(DXD).

This completes the proof.

The calculations of §1 imply that any maximizer

w yields a dynamically possible steady flow; we state

this fact next. We note that, by standard potential

2 1theory, Gw e H (D)nH (D) and Gw e CI'a(D) for every

-13-



0 Ca C 1.

Corollary 2.2. Whenever w e K satisfies (2.4) then

there holds

(2.6) f w3(Gw,#)dx = 0 for all # e C; (D)
D

Integrating by parts formally in (2.6) we get

a(Gw,w) = 0. This means that there is a functional

dependence F (VFA0) such that F(Gw,w) = 0

identically. Condition (2.6) may be said to express

the functional dependence between Gw and w "weakly"

therefore. We now give this dependence explicitly.

Corollary 2.3. Whenever w e KA(D) satisfies (2.4)

then

(2.7) w = AI a.e. in D, 0 = {x e D: Gw(x) >i}

for a constant p > 0 uniquely determined by w;

denotes the characteristic function of 9.

Proof. We consider a family of variations of w

different from that used in the derivation of (2.6);

namely, we define
lS) (x) = W(x) + s [z 0 (x) - z1lx)] s > 0

for arbitrary z0 ,Z 1 e L (D) satisfying

-14-



. zo (x)dx f z (x)dx

] z0,z 1 > 0 a.e. in D

z 0 a.e. in D\(w X ) -6)

z - 0 a.e. in D\(w ) 6)

for some 6 ) 0. When s • 0 is sufficiently small

(depending on 8, Izol", Iz1l..) we have

w 6 K (D), and hence we conclude that

E.0 ds) Ew 1 Is= +

= f zo(x)Gw(x)dx - f zl(x)Go(x)dx
D D

It is easy to see that the latter inequality holds for

arbitrary zo,zI as above and arbitrary 6 0 only

if

(2.8) ess sup G0(x) 4 ess inf Gw(x)
SW~x <,X w(x)P0

The continuity of Gw implies easily that strict

inequality cannot hold in (2.8); hence we may define

(2.9) i = ess sup Gw(x) = ess inf Gw(x)W W)<0, W(x)>O

From this it is now clear that w = X a.e. in

{Gw > a} and w = 0 a.e. in {Gw <i}. Therefore,

in order to conclude the desired representation (2.7)

it suffices to show that w - 0 a.e. in S = [Gw =

(as we have not excluded meas S > 0). To prove this

we observe that both Gw and VGw when considered as

functions of either x or x alone are absolutely

continuous on almost all lines (segments in D)

- is-



1

parallel to the coordinate axes. Thus, as almost all

points of S are points of density of S along such

lines, it follows that the pointwise first and second

partial derivatives of Gw vanish a.e. in S. Hence

w = -AGw = 0 a.e. in S, as required. This

reasoning is taken from Morrey [13) Theorem 3.2.2(c).

Finally we notice that > 0 since otherwise w - A

a.e. in D, contradicting hypothesis (2.3). This

completes the proof.

"j We leave the general question of the regularity of

the free boundary 3{* > 01 C {4 = 0) unresolved

here. All subsequent results of this paper depend upon

(2.7) only. In J4, however, we do prove that the free

boundary is a simple closed C1  curve if A is large

enough. For arbitrary A we conjecture that the set

of irregular free boundary points (where V* - 0) is

finite or has one-dimensional Hausdorff measure zero,

but this appears to be an open problem.

§3. ASYMPTOTIC ESTIMATE

This section is devoted to the proof of estimate

(1.20) which is basic to the asymptotic analysis of

solutions as A + ®. We suppose throughout that w

satisfies (2.4), and we write ' = Gw - P according to

(2.7). For any such w we define

-16-



(3.1) T(w) -1/2f IV+ I 2 dx (,+ = max ,0}) ;
D

T is the kinetic energy of the vortex core

a- ) 0).

We prepare the proof of the main theorem by two

short lemmas. We write C, ClC 2 ,... , for positive

constants independent of X.

Lemma 3.1. There holds the lower bound:
1 1~i

(3.2) E(w) - log - c1 2 - 1)

Proof. We consider for large A

(3.3) M XIa e e KA(D)
A A

where X e D is chosen such that H(X) = min H(x)
xeD

(the reader will verify that H(x) + + as x + aD).

Then we may estimate

E(w) )E(W)

lo 1 (X) + ol
= - fflog lx1"-x'I 1 )wxxd-()+o1

as I + -. From this (3.2) clearly follows.

Lemma 3.2. There holds the upper bound:

(3.4) T() = 1/2 f *wdx 4 C2
D

Proof. Since < = < 0 on 3D we may integrate by

parts to get

-17-



2T(w) - f V*+ V*Idx = f *+wdx = f *wdx,
D D D

using (2.7) in the last equality. Furthermore, we have

f *wdx = A f *+dx ( A (meas Q) 1/2 { f (*+)2) 1/2

D D D

Thus, by applying the Sobolev inequality to 
+

f S + 2dx} 1/2 4 C f IV*+Idx,
D D

we then obtain

2T(w) 4 CA(meas 9) 1/2f IV*+Idx
D

4 CA(meas Q){ f IVI* +12 dx} 1/2
D

= C [2T(w)] /2

this establishes (3.4).

Theorem 3.3. There is a constant R > 1

(independent of X) such that

(3.5) diam (supp w) ( Re (Awe 2 =I)

Proof. We estimate the parameter p using the obvious

identity

(3.6) T(w)= E(w) - 1/2 ;

then Lemmas 3.1 and 3.2 combine to give
1 1

(3.7) ) 9 log - 3

-18-
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Now lt x e supp w be fixed arbitrarily. Then

Gw(x) ii, and so we find (recalling (2.5))

1
.- log - C

2we 3

fglx,x')wlx'ldx' 4C -f log Ix-x'l-lw(x')dx'.
D 2wD

Equivalently, we write (for any R > 1)
C

2wC f log x-x'I w(x')dx'
D

Sl wx')dx':,~~ " lgIx--x'l
B (x) D\ B (x)

Re Re

We observe now that
fR lxog w(x')dx 4 X f log dy =/2--I ld y</

B Re x) IX-x 'I< TY

Therefore we get C

-2wC3  f log Ix-x'l w(x')dx'
D\BRe (x)

4 (log 1 (x ' d x '

Re
after manipulation this becomes

(3.8) f w(x')dx' 4 C4 (log R)-1
D\B Rc(x)

We now see that the desired estimate (3.5) follows

immediately from inequality (3.8). Indeed, we claim

that diam (supp w) 4 2Re if R is fixed large enough

to ensure that C4 (log R)- < 12 " Otherwise there

would exist x1 , x2 e supp w with the property that

B R(x 1 ) n B (X2) = and so, by (3.8),

-19-



f w(x')dx' f I w(x')dx' + f2 w(x')dx' > 1
D B (x ) RC

this contradicts the constraints for w e K (D), and

so the theorem is proved.

Remark. Of course, the constant R depends upon the

domain; an examination of the proof shows that R can

be taken in the form: R = c exp (kH*) where

H* = min H and c,k are absolute positive constants.
D

§4.LIMITING BEHAVIOR

In this section we study the limiting form of the

maximizers w = w supplied by Theorem 2.1 as

X + . We find that their appropriately scaled

versions tend to a unique limiting function which is

necessarily radially symmetric. To this end we first

prove some symmetry lemmas in potential theory which

are themselves of independent interest.

Lemma 4.1. Suppose that an open set A with

A BR(0) , 0 < R < -, possesses the property that

A = [x e BR (0) : V(x) > Y} for some constant

y = Y(A) where V = VA is the potential of A:

(4.1) V(x) = I log Ix-x' -dx'
2 w A

Then A is necessarily a ball (and so V is radial).
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Proof. We shall utilize a reflection (or "folding")

argument very similar to an argument used by Serrin

[17) for a different symmetry result in potential

theory. In particular, we shall show that A is

symmetric across a line x, - const.; this suffices to

prove the radial symmetry of A since we may rotate

coordinate axes arbitrarily without changing the

conclusion.

We define the open sets, for -R < t < R,

At - A A {x : xI < t), A* - {x : (2t-x1lx 2) 8 At)

that is, A* is the reflection of At across the
4 t

line xi  t. We then consider s - max (t : A* C A)

(it is easy to see that this maximum is achieved and

that -R < s < R). We now claim that A is symmetric

across the line xl= a; we intend to establish the

claim by showing that
(4.2) incas N0 for N = A\(A U A*)

First we observe that there must exist a point

x* e aA n 8A', since otherwise A C A and hence

A' C A for some t > s (contradicting the maximality

of s). We then write x = (2s-x*,x*) e aAs .  We now
1 2

* proceed to consider the two distinct cases:

(i)X 1  < < x1, (2) x1 = s=X. The reader may

check by example that either case may occur.

Case 1. Since x, x* e 8A there holds

0 = V(x*) - V(x) f log lx-x'l dx'
N
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owing to the fact that the corresponding integrals

over A. and A: cancel each other. But the above

integrand is strictly positive on N\{x1 = si and so

it is not possible that meas N > 0; thus (4.2) follows

in this case.

Case 2. Whenever x = x* G 3A n aA* {x =s) there

holds

V (x) = 1 f Ix - x'1 2 (xi-xl)dx'

because again the corresponding integrals over A and

A* cancel each other. Thus if meas N > 0 then

V x(x) > 0 (as the integrand is strictly positive on

N\{.xl=s})). Also, using the fact that now VV 0 0 at

any such point x = x*, we have by the implicit

function theorem that DA is a C1 curve in a

neighborhood of x = x*. But then it is not difficult

to see that these facts together imply that there must

exist t > s such that A* C A, a contradiction; thus

(4.2) also follows in this case.

Lemma 4.2. Let the class K* consist of all those
0 4 4 e L-(B (0)), 1 < R < -, satisfying the

R

constraints

(4.3) (x)dx = , ess sup c(x) 1BR(O) x e BR(O)

Let the functional F be defined by

(4.4) F(C) -

L.4 f f log Ix - x'I- iIx)c(x')dxdx'
4 BR(O) BR(O)
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Then * = I is the unique maximimizer of F

over K* for which

(4.5) f xC(x)dx = 0
BR(O)

Proof. The methods of §2 apply here without

change. We remark that the existence of a maximizer

follows by the proof of Theorem 2.1. Furthermore, the

proof of Corollary 2.3 shows that any maximizer

C of F over K* has the form

IA , A = [x e BR(0) : V(x) > Y)

for V given by (4.1) and some constant y

(determined by C as before). Therefore, Lemma 4.1

applies and we conclude that A is necessarily a ball

of radius 1; obviously, (4.5) is imposed to determine

the center of the ball uniquely.

Remark. Both of the preceding lemmas have natural

generalizations to n dimensions which can be proved

using the same methods. Also a wide class of kernels

(defining the potential V and the functional F) can

be permitted in place of the Newtonian kernel. We

leave these extensions to the interested reader.

We now proceed to determine the limiting behavior

of W as A . We define the center of vorticity

to be

(4.6) Xx = f xwx(x)dx
D

We now fix (for the remainder of the discussion) a

sequence A = A+ such that there exists a limiting
J
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center

(4.7) XX X* e D as A = AX

Theorem 4.3. Any X* as in (4.7) satisfies

(4.8) H(X*) = min H(x)

XeD

Proof. Let W = WA be defined by (3.3) with[A
H(X) = min H(x). It is a consequence of Lemma 4.2

xeD
that then

1/2 f f h(x,x')w (x)w (x')dxdx'
D D

1i-- f f log Ix-xhI-I (aW (x')dxdx - E(wA

_L jf I log lx-x'liW (lx x')dxdx ' - E(w)
D D

•1/2 f f h(x,x')N,(x)W,(x')dxdx',

D D

using simply E(wA) ; E(W.) in the last inequality.

Taking A X - in the above we obtain, by virtue of the

estimate (3.5), the inequality H(X*) 4 H(X); this is

the required result (4.8).

We can now say that (due to (3.5)) as A = A. * )

(4.9) ix(x) * S(x-X*) as distributions

where 6(x-X*) is the unit (Dirac) delta measure at

x = X* given according to (4.8). The precise
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asymptotic nature of w is expressed in terms of its

scaled version in the following theorem.

Theorem 4.4. Let C, e L(B R(0)) be defined by

-1 2=(4.10) CA (y) - A w1 (Xx+ey) (AIC =1)

for fixed R as in (3.5). Then as A -

(4.11)C * = B1 (0) weakly star in L*(BR(O))

Proof. We retain the notation of Lemma 4.2. For any

e G K*, let w e K)(D) be defined as

( -l(x-x)) x e BRc(XX)
S(x) =x e D\B (X

A direct calculation then yields as X

(4.12) E() = log !+ -F(r.

1/2f f h(x,x')w(x)w(x')dxdx'
D D

= log + - F(C) - H(X*) + o(1)
Irv- 2

and likewise this statement holds for w, C replaced

by wA, €. But then E(w) 4 E(wi) implies that

F(;) ( F(C) + o(I) as A + -. For any sequence

A + there is a subsequence A' + such that

C + e K* weakly star in Lw(B (0)). Then
Rm

F(C) = lir F(4A,) ) F(4) for all e K*, and so we
m + m
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conclude by Lemma 4.2 that = * I (the

construction (4.10) ensures condition (4.5)). Since

this conclusion is independent of the sequence Xm

taken (by the uniqueness of *) we find that (4.11)

holds whenever X * .

The conclusion of the preceding theorem now

implies the convergence of the scaled versions of the

corresponding streamfunctions.

1-

Theorem 4.5. Let vX e c ( R)) be defined by

(4.13) vX(y) = W*.(XX+ey) (),iC2= 1)

for fixed R as in (3.5) and R < R' < Then as

(4.14) vx * vX in c("R,(0)

where v* is given by

1 y2

(4.15) v*(y) = v*(Iyl) = 4l
log lyl I  1 lyl < -

Remark. The limit function is also expressible as the

potential

(4.16) v*(y) = 21 f 2 log ly-y'l-1 *(y')dy '

We note that vA, v* e H2 (BRI(M)) n C (BR.(0)) for

every 0 < a < 1, and -6VA = , -Av* = *. We call

v* the (classical) Rankine streamfunction.
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Proof. We define VA 6 C (R2 ) by

VA(Y) = R2 log ly-y'l-C,(y')dy '

Since supp € C BR(O) and 0 4 1 a.e. in BR(O),

we may apply standard potential theoretic estimates

(see Morrey [13]) to conclude that

.VVA(y)l , C

lVV (yl)-TVV(y ) H Cly -y 21 log (1+ 2R'
1 ly -y )

for all y, y 1 y2 e BRF(O); C is a absolute

constant. It follows that both families (V1} and

{VV,) are equicontinuous in BR,(0). Since (4.11)

implies the convergence Vx + v*, VVx+ Vv* pointwise

in BR,(0), we find then that

(4.17) VA v* in C1 (BR,(0)) as A + -

Let D. = {y e R2 : X + ey e D) denote the

scaled version of D. Then v1  is defined on D1  and

vA 13D = TA IaD = -wI 1u. We observe that by the

identity (3.6) and the established upper and lower

estimates for E(N) (along with the bound for

T(w1 )) there holds

' A log - + 0(1 as A +
Thus, since d/e ( fyl ( 1/c for all y 8D x if

d =1/2 dist (X*,aD) 4 dist (XVaD), we conclude that

vA(y) =1/2 log 1yI + 0(1) = vA(y) + 0(i) as A +

for all y G3DX. Now since we have

a(v,-V,) = 0 in D. and Iv,-V A l C (a constant

independent of A), we apply the interior gradient

-27-
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..

V estimate for harmonic functions to get

sup IVv (y) - VVX(y) I ( C•
yeBR ,(0)

R1

Therefore, v.-V + c* = const. in C (BR,(0 now

recalling (4.17) we find that v. + v* + c* in

C (BR,(0)). Finally, we see that c* = 0 since

meas {v, > 01 = meas {v* > 01 = w by virtue of the

fact that 4X= I{vx70} 8 K*.

Corollary 4.6. Let A= {y e BR (O) : vI(y) > 0).

Then AA tends asymptotically to the unit ball as

A + in the sense that

(4.18) AA = {y = (r cos O,r sin 6): 0 ( r < a1(B)}

where aA e C [0,2w] is a periodic function and

~daA

a + 1, + 0 uniformly in [0,2w].

Proof. This is an immediate consequence of Theorem 4.5

by the implicit function theorem.

e

We end with some expansions.

Corollary 4.7. The following asymptotic expansions

hold as X + :

(4.19) E(w ) L (log - + )- H(X*) + 0(1)
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(4.20) T(wA) 1 + o(1)
1 6w

(4.21) u - log - - 2H(X*) + o(1)

Proof. Derivation of (4.19) : Applying (4.12) to wA

and using F(C.) + F(C*) we see that it suffices to

calculate the value of F(C*); this is given byIf ,
F(C*) - v*(y)dyi-j "Bl(0)

Derivation of (4.20) : Changing variables we have

2T(w 1 Vv 12dy + 1 IVv*1 2dy 1

R (0) B B1 (0)!R

Derivation of (4.21): Using (3.2) this is immediate.
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